

Broadband Communication Payload for Search and Rescue Operations

Members: Jarrod Love-McFrederick, Theodore Houck, Nicholas Crenshaw, Matthew Brown Advisor: Dr. Rajendra Arora

Background

- Several ships have been severely damaged, and they can't return to shore
- These ships and yachts must be located so that search and rescue (SAR) operations can be deployed
- The team is to design a communication payload device to attach to a deployable drone

Figure 1 – OV-1 Diagram

Targets

- Detection of distress signals
- Support of FPGA code
- Independent battery source
- ❖ Internal storage memory Modularity (Should be able to easily mount and dismount)

Current Results

- ✓ Created a Linux environment to easily initialize transceiver
- Successfully interfaced between FPGA and transceiver
- ✓ Successful implementation of antenna
- ✓ Can detect and analyze target frequencies

Current Challenges

- Due to size constraints, 3D printed housing cannot be printed on 3D printers accessible to the team
- + Will have to redesign housing into submodules that can be put together
- Transceiver data is not easily accessible for real time analysis
- + Redesign of image file for FPGA will be required with custom VHDL designs